LeNet - 5
Structure:
Dimensions in each Layer
- conv(f=5x5,s=1)
- pooling(f=2,s=2)
- conv(f=5x5,s=1)
- pooling(f=2,s=2)
- fully connected layer(120)
- fully connected layer(84).
5 layers: 2 convolutional layers, 2 fully connected layers, 1 output layer Totally, 60K parameters need to learn.
Alex - Net
7 layers: 4 convs, 2 fc, 1 output Totally, 60 M parameters.
VGG - 16
convs: 3x3, stride = 1, max-pooling: 2x2, stride = 2, 16 layers: 13 convs, 2 fc, 1 output Totally, 138M parameters.
ResNets
Skip connections, can help much deeper networks.
Inception Neworks(GoogleNet)
Using 1x1 convolution to reduce computational cost